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Certain dynamic properties of a process system are introduced, generalizing
for differential and difference equations the majority of the known concepts
(see [1 — 8], for example) in the theory of practical stability, such as; (4, A,

t, T), viz,, Chetaev stability [1], the practical stability of LaSalle and
Lefschetz [3], quasicontractive and contractive stability under perturbations
[4], terminal and semiterminal stability [7], and a number of others.Theorems
covering many of the known stability tests (for example, total practical stabil-
ity [5], practical stability with prescribed settling time [6], and some others)
are obtained for a process system (*) with the aid of the comparison principle
[9,10], Effectively verifiable cases of application of these theorems are select-
ed, An example is presented,

l, Theorems on estimates for a process system,
For a process system S .with set T that is some subset of the real line R with a
natural order relation inherited from R , we consider the dynamic properties express-
ed by the formulas

Pye = {W, [WaR; A\ (VA € a (1))(Vi € A)R,l} (1.1)
Pye = {W, [W,R; N\ (A € a (t,))(Vi & A)R,l}

Py = {W, [W,R, A (day (t))(VA & ay (2))(Vt & A)R,l}

W, = (Vt, = T°)(Vh, = P*)(Vz & rh),

W,=(Vt= Ty (z, b)), R, =2 (t, h) = P!

R,=z(t,hye P/ z2(-, h==x

H={h =y ht) : to = T°, hyy = H,}

Here P, Py =E and P° < H are certain fixed subset of sets & and H,
such that (Vi & T) (respectively, (VE,&= T°)) their sections P, Py (respect-
ively, P,°) by the hyperplane t (respectively, Z,) are not empty; a (f,) isa
set of fixed intervals A = Ty, ofform [t_, ¢t7), t. & T, ={t =T : t, < 1t}

*)  Anapol'skii, L. In. and Matrosov, V. M., Comparison method in the analysis
of perturbed processes, In: International IFAC Symposium on Problems of Organiza-
tional Gontrol and on Hierarchical Systems (Baku, 1971). Reports Abstracts, Pt. 1.
Moscow, "Nauka", 1972,
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(in the case of degenerate intervals A we take A = {¢_}); a, (¢,) is the set of
nonintersecting intervals A = [t_, £*) C T, whose measure mes A > p or
mes A < p (p = const > 0) (the intervals A & ay (Z)), in contrast to the
intervals contained in set a (#,), are not fixed; however, the number p is taken as
specified); T° < T is the set of initial instants of time £o; B = {(¢, 2): t &
T, z & X'} is the space of positions; X! is the state space at instant ¢ H is
the space of initial data; H, is the space of inputs and (or) of initial states at in-
stant ¢,; r is the fundamental ratio of the process system, with domain dom r C H
such that for any h from dom r, rh is the collection of processes z (-, h) of
process system S with initial data h, whose domain is T, (x, h):(Vi = T, (z, h))
z (t, k) = X' in addition, we assume

(Vo & T°) P * = (P° () domr), #= & (1.2)
(Vh = (to, hyy=domr)(Veesrh) Tz, B) | Ty,

Properties P, and P,. had not been mentioned earlier, however, they often
obtain in the dynamics of regulatable systems. Property P,., closely connected with
the property of a differential regulatable system, cannot be expanded to an oscillatory
one [11]. The meaning of property P,. is the following, For any initial data % =
(to, hy)s o= TS h,= Py*, and for any processes with these initial data; 1) z (1,

hye P! forall te T, ; 2)aninterval A =[i, ) & T, from the set a (t)
of intervals exists such that z (¢, h) & Py forall t<= A, Thesets P, Pf, P° and

a (1) are considered to be specified a priori, Incontrastto P,, , in property

P,. theset g, (t) of nonintersecting intervals of "length" not less (or not greater)
than p , located to the right of point 4, is assumed to exist; and z (¢, ) = Pyt
forany A = q, (t) and forall ¢te A . In real situations P! is the set of possible
states of the system, while Ps¢ is the set of its required states when some additional
constraints on accuracy, transient performance, etc, are fulfilled.

Obviously, Pje = Pj. On the other hand, property Pje is equivalent to the

property
Po'={W W,z (¢, h) = Plt}

P, te=T,\( U A)
Pl Aea(to)
PTPINOPS te( U A
Aea(to)

called the P,P° and is estimate on 7T [9] of process system S . Eachof the
properties P (i = 1, 2, 3) reduces, under special assumptions on 7, T °, P, P°
Py, a (o), au (to), to one of the following specialized forms of stability; (4, A,
to, T), viz., Chetaev stability [1], practical stability [3], (total) practical stability
and its uniform analog relative to time-varying sets, stochastic practical stability [12],
In addition, properties P and Pje reduce to practical stability with prescribed
settling time [6], while P ;. reduces to terminal and semiterminal stability [7] and
their uniform analogs, as well as to quasicontractive and contractive stability relative
to time-variable sets [4]. The proof of this proposition i n tot o is cumbersome;
therefore, let us restrict ourselves, say, to establishing the fact that practical stability
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[3] ensues from Py,
Let Ry' = [0, +), Q bearegionin R", Q°C Q, C* = CIR', «x
Q, B™, i.e., C* issome set from the class of 7 -dimensional functions continu-
ous and defined on  Ry! X Q. Let us consider a family of ordinary differential
equations
©=f@ 2+ R 2), z{t) =z, Rl (1.3)
feCIlRy x @, R"]

We assume that (Vz, = @) (Vi, > 0) (VR & C*) each classical solution zg (-,
ty, o) of the Cauchy problem for (1.3) with g (¢y, £y, Zo) =%, is continuable
to the right onto the interval [¢,, --00). System (1.3) possesses practical stability

in the sense of [3] if

(Vo =T)(Vry = QY (VR C*Y{(Var (-, o, X0)) (1.4)
(Vte1te, + o)) zr (t, Lo, m) EQ

wetake T = T° = R,', X' = X = Q, H;, = Q° x C*; we specify the process
system S as the set of all classical solutions zr (-, %o, Zo) (o & T°, 2o = Q°)
of problem (1.3) with R & C*. Then dom r = T° X Hy,; (Vh = (t,, 4, R)
= dom 1) th = {&g (-, to, Z¢)}, i.e., rh is the set of all classical solutions
of Eq. (1.3) with specified t4, zo, R; (Vh & domr) (Vr & r1h) Ty, (z, b) =
[tgs+ 00). Weset

P, = Hy, Pft = P' = Q, a(t,) = {4}, A = [ty + o0),

P* = dom r
The formula of property Pjo takes the form

(VA = (tg, Zo» B) = T° X Q° X C¥) (Vzr (-, 1y Zo) &

rh) (V¢ & lty, + 00))

IR (t? Ly, xo) = Q
coinciding with (1.4). Q,E, D, The other implications described in the proposition
are proved analogously.

On the basis of the comparison principle [9, 10]we obtaincomparison theorems for

the composite dynamic properties P;. . For the process system S under assump-

tions (1. 2) let there exist comparison systems S.* and vector-valued comparison
functions V& = (1%, w%, vy%, Ue*) (¢ = 1, 2) [10] and let the conditions

(V& = T%) P& = (PY* ) dom ™ Yee % (1.5)
(thﬁ = (tgc’ hﬁc) e domr ca) (cha er cmhca) T :,Gc (xca’ hca) = Zac

be fulfilled, Here £p,%, huc% R ..., and T05% P7% Py, ** ... are,
respectively, variables and constants by which the comparison system S& s
described., Since the dynamic properties P;- (i = 1, 2, 3,) containtwoconcluding
formulas R; and R, ., two comparison systems S.% and two vector-valued com-
parison functions V% (o0 = 1, 2) are used [10], in general, for obtaining the
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comparison theorems, As a rule, we take (*)1 §! = §2 and V! = V2, For
the dynamic property P;o (respectively, for the primary property P® comespond-
ing to the concluding formula Rg) the dynamic comparison property (respectively,
the primary dynamic property of the comparison system S.%) is expressed by formula
of Pj, (respectively, of P;..®) obtained from Pje (respectively, from P;.%)
by attaching a subscript ¢ and a superscript o to all the symbols occurring in it,
The following comparison lemmas for the dynamic properties P;o (i = 1, 2, 3)
are derived from the comparison principle [10] (the symbol }— denotes deducibility
in the prese.nt theory):

A\ [(4a) /\ (Ba) /\ i0B%* | P = Pio (1.6)

(Aa) = (Vh = (tor hy) = dom ) w7

h® = (t5e hic) = (Vor® (o), Voe® () € dom r %}

(Bo) = (VR = (to, hy) € H,,*) (Vz € rh) (Hz* = k) (VEE Ty *) (1.8)

v (t, z(t, h), h) <z (w*(t), v®(to), Vos®*(h))}

Ty Ty () (woy? (T:occ)

Hyoc (hedomr: (Voerh)(VES T, (¢, z(t, k), By domv®)  (1.9)
B == {(Vto® = v0r® (to)) A\ (Vha, =ve® (R) A(EH = w*(t)) A\ (1.10)
(7 Ra A\ Rao=> v (t, z(t, k), h <L 2.2t h))

Cot = W (Vt = Ty (Htod & T (AhLy & Pl

(Vzlerlthd) (At e Thy), Cio? = C2Cp*?

C ?= W1 (Atos® E T ) (Ahpe € Piie) (V22 E12he?)

— (VA a(to)) (VEE A) (A2  a? (toe) (At2 & A

o (VAS & oty A = 0t (V1 & A) (317 = A

Coo*? = (Va2 (tec?)) (day (£0)) (VA € ay (t))

(Ve B) (FA? & a2, (to) (At € A

To obtain comparison theorems from (1, 6) we use the following procedure [10]. Let

CatX = {(Vt= T, pridom V) (Vr e QU \ PY) (1.11)
(Vo e POy vr(t, 2, k) Lz
c2Xr={VteT, 2ﬂ( U A)ﬂprldomvz)

- xi®

(V= Q¥ \ Pj)(Vz2 epﬁz’“”w(t, z, Y<Kz, i=1,2
c2 XS =((VieT, N U A) () pry dom v?)

Acay(t)

(Vz e Q¥ \ P/)(Vzre POV (t, z, h) Lz

*) Anapol'skii, L. Iu, and Matrosov, V. M., Comparison method in system
dynamics and in abstract control theory, Repts. Abstracts Fifth Kazakhstan Interinst,
Conf, Math, and Mech,, 1974, Alma-Ata, 1974,
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Here (Vi &= T') Q*t CC pr, dom v*, (0% is the set containing the values of all
processes z (-, t,, h;) atinstant ¢t for h, & P, * [) pry dom v*,  while
prg dom v* is the projection of set dom v* ontothe f-axis (p = 1,2,3).
According to the algorithm for obtaining the comparison theorems [10] the conditions
occurring in the comparison theorems for the dynamic properties P;- are, with due
regard to (1, 11), written as follows:

Cho (to® = Vor® (to)) = (Lo (T°) ST (a =1, 2) (1.12)
nai> (g = vor®™ (B)) = (Yt & T°) vos™ (to, Pi*) & Py (1.13)
C}i" (tt‘l == wl (t)) = {(Vto = TO) wl (Tto) g T%ot‘(fo)C}
Cflo (2 =wr(t)= {(Vto=T°) (VA= a(ty)
(HAZ = a (vos® (20)) w? (A) = A2}
oo (82 = wh (1)) = {(Vte & T°) (VAR & a.? (vor® (£0)))
(HA = a(s) »*(A) = AP}
Cip? (82 = w? (1)) = {(Vt, = T°) (Vaul (vor® (£0))) (Hay (2o))
(VA & ay (t) (VE = A) (HAZ & au® (vo® (20) (HE2 = Af)
2 = w? (9}
Crxie X 1 = (WICHo X 1} (1.15)
CheioX 2 = (W2Chi- X%, i=1,2
Crrze X 2= (W*(Vt=T,2 ) pr; dom v?)
(Vo Q¥ \ P) (Va2 e P2 (¢, z, b) Kz
We = (Vto [— T() (Vhtoie Ptn* ﬂ prs dom Ua)

(1.14)

Thus, the following theorem holds for the dynamic properties P;. .

Comparison Theorem 1. Let comparison systems S.* and vector-
valued comparison functions V& = (V%, w% vg% g% (@ = 1, 2), satisfying
conditions (1,5), exist for the process system S under assumptjons (1,2). Then

2
I\ (Clae (g, = vor® (1) N\ Clie (8% = wHI) N\ Corio X g1 Pire=>Pe
=1
where the formulas mentioned are specified by relations (1. 13) — (1. 15).
Note that under the condition vy,* : I° — Tc°%(a = 1, 2) formula (1.12) is
generally valid; therefore, the condition C,;-*(fp* = Un® (£o)) does not appear
in the theorem’s statement.

Notes, 1°, Condition (1.13) signifies that at any initial instant ¢ & 7° the
image of some fixed set P,o" from the initial data space H, under the mapping
vee™® is contained in the fixed set P::a(e,,)c of the initial data space of the compar-
ison system ..
2°, Relations (1. 14) signify the imbeddability under mapping w* of certain

time intervals T, A,. ... of process system S into the corresponding time intervals
T%g, Ac%. .. of comparison system  S.* .
0

3°, The first (respectively, the second and third) requirement assumes that for
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any initia] data from the set P,* [) prydom ! (respectively, P, * (] pr, dom »?)
and for certain 2>t the function »* (respectively, »* ) cannot be majorized
from above in the sense of a partial order from Xx1“'(") (respectively, X>%*() by
elements of set P (respectively, p2o*())  when z is chosen from the set
QU \ P! (respectively, Q\ Pyl).

The comparison theorem obtained is a general one and, under special assumptions
on the process systems S and S and on the vector-valued functions V%., from
it follow comparison theorems for differential and difference equations, for dynamic
and dispersible systems, etc, Further, this theorem can be made more specific for the
case when the process systems S and S,* are sets of solutions of ordinary differen-
tial equations.

2, Application to differential equations, Let F be
a real Banach space T = [0, 7) be an interval of time ¢, T C R, = [0,
+o0), I’ T,GCZ T XE, pryG= T, F be the set of functions z: G — L,
where [ is some metric space. For each function 2z & F we can examine an
ordinary differential equation in E

r =f(t z z (&, 7)) (2.1

Here the operator f: G X L — K satisfies in its own domain the conditions of the
existence theorem for solutions in the Carathéodory sense (C -solutions), i.e., for
any h = (24, 20, 2) EQX =G X F(G° S T X pryG, pr,GG is the closure
of pry(r in E) the C -solution =z (-, h) of the Cauchy problem for Eq. (2.1)
exists, defined on the interval [¢,, ©). We take the system of C -solutions of the
Cauchy problem for Eq. (2, 1) as a process system S by assaming (Vi T) X! =
E, Vtoe T H,y= G,° x F, dom r = Q° here (VA = (£, 2y, 2) & Q°)
rh = {z (-, &)} is the set of C -solutions of Eq. (2. 1) with initial data A , such
that

(Vz (-, k) & 1h) z(toy Loy ZToy 2) = T AN Ty (x, B) = (£, )

Let the continuous function 1% : T X pr,G x F — R™, (¢, z, z) ~ 1”
(¢, z, z) (@ = 1, 2 and a componentwise partial ordering is introduced in R*%)be
such that (Vh = Q°) (Vz (-, k) & rh) the function v* (-, z (-, k), 2) of
the variable ¢ is absolutely upper-semicontinuous in the sense of [13] on any interval
[teFo] C [£p, 1) and

D v*(t, z, z) == lim inf s~ [v% (¢ + 5, = + sf (t, z, 2(t, 7)), 2)— (2.2
g0t

ve(t, z, 2)] <C g% (¢, v* (¢, z, 2)) o=1,2)

for any x and z and for almost all ¢ such that (¢, z, 2z) & G* X F | Here
G*<S G, pry Gi* =T, (Vi< T)G* 5= ¢; the measurable function g% T
x A% — R*® (4% s a region in R**, containing the set of values being examined
of function v%* )satisfiesin 7 x A% the condition in [14] on the variable v*
ie., g* (2, 1,%) < &> (t, v,®) when v,% < V%, Vs* = Vg™, for almost all
te= T andforany s=1,..., kg whilein any compactset B*C T x A®
the function g* is measurable in ¢ and is bounded in norm by a surmmable function
e5* (2):
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g%, v*) | <. ¢B*(¢) when (¢, V%) & B%,
| @(tydt < + 00, Tpu=puB*CT

r B®

Here measure, measurability and integral are to be understood in the Lebesgue sense.
On the basis of (2.2) we can form an auxiliary system of ordinary differential equations
in R«

%y = g% (i, 2%) (a = 1, 2) (2.3)
For system (2, 3) we examine generalized solutions of the second kind [15], determined
by the initial data A% = (f,, z.,*) & I' x A®*. These solutions are assumed to
exist forany A% < T x A% onthe interval T, = [f,, ). From Theorem 1
on a differential inequality in [14] we have

(Vhe QX N (G x F) (Vz (-, h) =r1h) (V= T,% (2.4)
vr (¢, z (¢, h), z) < x.** (¢, b2

Here x.** (-, h®) is the upper solution of Egs. (2.3), passing through the initial
point k% = (t,, x,& = V* (h)) (the existence of upper generalized solutions of
the second kind of Egs, (2.3) is ensured [14] by the above-mentioned conditions for
function g%), and T,* is the subset of T, during which Z (-, k), having started
in Q° N (G,* x F), remains G,*. We introduce the vector-valued function V%=
(%, W%, vy%, vge®) (@ = 1, 2), whose component v* has been defined above,
w* = vy® = 1, while function V® is specified by the relation
(Vh e Q) vo® (h) = 17 (h) (2.9)

Let H,* = @ (see(1.9)). We define the process system S.* as the set of
generalized solutions of the second kind of Egs. (2.3) with initial data A > = T X
A%*.  Estimation of (2.4) shows that conditions (1.7) and (1.8) are fulfilled;
consequently, the process system S, and the vector-valued function V* = (v%, 1,
1, v*) are the comparison system and the vector-valued comparison function for
the process system §. In addition, we take (see (1.2) and (1.5))

PCTXE, (VteT)P'NG£Q, P,CT X E, (2.6)
(VteT) P/ NG O
P°CT° X EXF, (Vtg =T pr, PP GI°, P* = P°[) Q°
(Vo T )P * =, (Vo &T°) (Vi & Pr*) (VY (-, b))
Tt (z, h) = [, T)
P)CT xR, R:*CT x R¥:, P T° x R
(Vo= T) Pogy = Poe N A+
(thc 5= P;z) (cha ( ’ hca)) TZG.; (xca7 hca) = [tO’ T)
Here P, P;, P°, P!, P;* and P are certain fixed sets in the appropriate

spaces. We set

(Vto = TO) a (tO) = aca (tl))v au (to) = a/p.ca (to) (2- 7)
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Conditions (1, 13) and (1. 15), with due regard to (2,5)— (2.7) take the form (by
virtue of (2, 6) and (2, 7) conditions (1. 14) are fulfilled trivially)

C%)io (x()ca = Ua (h)) = {Vto E To) (Vhto = (2‘ 8)
(20, 2) & Py *)v*(to, by & Pest)
Crxio Xyt = (Vo = T°) (Vz = F) (VE &[4y, 1)) (2.9

(Ve G\ P (Val e P vl (t, 7, 2) K 2.
CorX 2= (Ve eT)(VzeF)(Vt(t, 1N ( U A))

Acalto)
(Vo= G \ Pf) (Va2 & Pu) v (¢, 2, ) L 2%} (i =1,2)
Cog X2 = {(Vt, = T°) (VzEF) (Vi t, 1)
(Vz = G2 \ P{) (Vz 2 = P¥;) v® (¢, x, z) <L =)
Comparison Theorem 2, Letthe above-mentioned assumptions con-
cerning differential systems (2. 1) and (2. 3) and functions v* (@ = 1, 2), as well as
conditions (2, 6) and (2. 7), be satisfied, Then

2 o

/\1 [Chie (Zoc® = v* (h)) N\ ConieX ¥ = Ppo. = P

o=
Here formulas Chyo (Zoe®* = v* (h)) and Claie X «* are specified, respectively,
by relations (2, 8) and (2, 9), Similar results can be obtained for functional and differ-
ence equations in £, Comparison Theorem 2 follows from Theorem 1,

Sometimes in applications we can find the general solution of comparison system
(2.3) or obtain sufficiently accurate estimates for it, In this case the hypotheses of
Comparison Theorem 2 are made more precise, For the formulas C:g X.> we
take, instead of (1. 11), the following expressions containing the upper solutions
z%(., h®) of comparison system (2.3) (Tp* & [, T) i =1, 2, 3):

CibX = {(VEE [t 1)) (Vz =Gt \ P') (2.10)

(Vzl = z¥1(¢, to, V' (to, Toy 2)) E PV, 7, )Lz} {i=1,2,3)

C,’c?»X,,,2 ={(VieT*)(Vze Get\ P/ (Vz 2 =

22 (t, tov? (to, Zoy 2)) E Pi2) V2 (t, x, 2) <L x?} (i=1,2)

CaX 2= {(Vt=Te*) (Ve G2\ P/

(V2 = 222 (¢, to, V2 (tor @0, 2)) E Py (V2 (2, 2, 2) L &%)
On the basis of the procedure for deriving the comparison theorems [10], instead of
conditions (2, 9) we obtain

Chi X 2= (Ve T (V2 EF) Cx5X %)

where the c;‘:fﬁ X,* are presented by expressions (2. 10).

From Theorem 1 in [14] on a differential inequality for generalized solutions of
the second kind of system (2, 3) we have

(Vo = T°) (Va2 & A% 28 < oy € A%Y(Vz 2 (-, to, T )
(Vt = [tm T)) xca (tv tOv xcoa) <.~x;a (tv t01 zccl:)



874 R. Z, Abdullin and L., Iu, Anapol'skii

Consequently, if a vector M® (f,) & A® exists satisfying the condition

(Vh = (ty, b)) (RN (G* X F))) v* (h) < M* () (2.10)
then the upper solution x.** (-, ty, M% (t,)) of comparison system (2.3)  will
majorize all other solutions with initial data zo, = V* (k), R = Q° [} G* x F.
We note that if

M & (to) = supv*(to, hey) hee € (R (G* X F))y,
exists, than we can set M® (1) = M,* ().
Let vectors m® () & R¥e  exist such that
(Vie T) (Vz = ?11‘ N PY) (Vze= F) vl (¢, x, ) > m' (¢) (2. 12)
(ViteT) (Ve G2\ P{) (Vze= F) v* (¢, z, 2) > m? (b
I B
ma() =infvl (¢, 7,2, s eP, & F
me2 () =inf* (¢, 2,2, 2 G¥ P,z F

exist, then for the accuracy of the estimates it is appropriate to take m® (¢) = m,*(z).
The sets P2, P;2, P°® (¢ = 1, 2) are defined as follows;
(Vto & T°) Pei, = v (tg P1J¥) (2.13)
(Vi, = T°) (Vi E[ty, 7)) PV = {2} R} g <x* (8 to, MY(20))}
(Vt, = T°) (Vi & [ty, 1)) Pr.2' = {22 R" 2. 2<x.*? (L, ty ME(Lo))}

Then the dynamic comparison properties Pjoc and condition (2. 8)are filfilled. with
due regard to (2.10) — (2.12), analogously to [10] we obtain from (1. 6) the following
test for the existence of properties P;o in system (2. 1).

Theorem 3, Letthe assumptions relating to differential systems (2. 1) and
(2.3) and to functions v* and the conditions (2, 6), (2.7), (2.13) be satisfied and
let vectors Mo (¢)) & A% and m* (t) & R"® exist, for which relations (2. 11)
and (2. 12) are valid, If

(Vio =T (VE = [to, 1)) mi(t) K aat (L, to, M1 (to)) (2.14)
(Vi T°) (Vi = ( \ Uu )A) m? (8) i (¢, to, M2 (ty))
ea(le

then dynamic property P;o holds in system (2. 1), If the first condition in (2, 14) and

(Vto = T°) (A € a (b)) (VI E D), m? (1) L 2** (¢, by, M? (b)) (2.15)

are fulfilled, then property P, holds in system (2.1). If the first condition in (2. 14)

and
(Vo T) (Hau (t)) (VI E( U(”A)) m2(t) L 222 (L, to, M2(t0))  (2.16)
Eau )

are fulfilled, then property Pj. is valid for system (2. 1).

The simplest sufficient conditions for properties P,. to exist in system (2. 1) are
obtained from Theorem 3 when g% is independent of z.%, since in this case the
generalized solutions of (2. 3) coincide with the classical solutions and are determined
by quadrature
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t

22 (8) = 72+ § g%(s) ds

to

Consequently, the following is valid:

Corollary 1, Letthe assumptions relative to differential systems (2. 1) and
(2.3) and to functions v* with g% (¢, z,%) = g* () and the cond1t10ns(2 6), (2.7),
(2.13) be fulfilled and let vectors M2 (¢,) = A% and m® (f) & R*e exist, for
which relations (2, 11) and (2. 12) are fulfilled. If

t
(Vio s TO)(VtE [ty, v)) m (6) K M (t,) + f g (s)ds (2.17)

t
(Ve T\ (Vie( U A) m ) KM () + | g2(s)ds
AEa(ty) i
then property Plc holds in system (2, 1), If the first condition in (2, 17) and
t
(Ve T)(AAS a(t) (Vi S Aym* () K M2 (1) + { g2(s)ds  (2:18)
to

are fulfilled, then property P,o is fulfilled for system (2, 1), If the first condition
in (2.17) and

(Ve T7) (@auta) (VIS (_U &) m* () KM () + | g*(s)ds
Saylte ts

are fulfilled, then property Pg- is valid for system (2. 1).

On the basis of the propositions in Sect. 1 analogous theorems for properties re-
ducible from the properties P;. we have examined, covering the well-known results
in [8], follow directly from Theorems 2 and 3, Thus, for example, the following
statement is obtained from Theorem 3 for the process systems § and §,* being
studied with ! (¢, z, 2) = 1® (¢, @, 2), g* (t, =) = g* (¢, %) and for property

Pye with P = Py, a(t) = {A}, A = [t,, ©), which in this case reduces to
uniform total stability relative to time -varying sets [5].

Corollary 2, Letthe assumptions relative to differential systems (2. 1) and
(2.3) and to functions v* and the conditions (2. 6), (2.7), (2.13) and

M1 (tg) = {sup v! (Zg, he)s - . ., SUD V! (fgy )} & AP
by = (Q° N (G X F))y
m! (¢) = {inf v, {¢, z, 2),. . . infyl! (¢, z, 2)} & R
z= GNP, z&F
be fulfilled.
I (Vi, = T°) (Vi & [t, 7)) m* (t) L z* (8, tg, M* (¢,)), then uniform
total stability relative to time-varying séts obtains in system (2. 1).
Example, Letthe vector-valued functions » *. T X R™*— Rk“, whose
components are nonnegative quadratic forms, i.e.,
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0% (t, 2) = T Bi% Wa, i=1...,0k
exist for system (2. 1) with £ = B* Here B;" (1) isan n X n -matrix differenti-
able with respect to : , Let the product with respect to time of each quadratic form
v;* relative to system (2. 1) admit of the estimate

A(Z
v (t, ) < D) gre%i (e, 3); ik, g“ijz const >0
=1

Comparison system (2, 3) is now represented by the equation
g™ = 6%, G* = () (@=1,2)
whose solution, passing through point z.* at instant ¢ >0, has the form

& * (1, to, 2,7) = exp (G* (t — ty)) z.*
Let the sets
P={(t 2):t= R [zP<n(n}, Pr={{t, 2): t& R |2z B (9}
P*= P = {(tg, 2): o = Re', [z P <v (0}, |2 = <"

be specified. Here m (1), B (1), v (1) are continuous time functions such that (V: e
Ry n (), B0, v() >0 and 7 () >y (). Then the vectors M® () and
m* (1) (see (2. 11) and (2. 12)) are defined as follows:

M (tg) = A% (t0) ¥ (o), m* (1) 1;!9»‘ (@, W (D=3 us
A% (1) = (A% (&), - - - AR (0T, 2% () = [M* (0, . ., A (]T

Here A® () and A® (1) are, respectively, the largest and the smallest eigenvalues
of matrix B;*(1). If T = T° = R,' and the conditions

(V(t — to) 2 0) A (t)n (1) Lexp [G' (z — 19)] A (z0) ¥ (t0)

(Vty 2 0)(Hay, Vi (U 4)), OB @O
Aeqy, ()

exp [G? (t — to)] A2 (25) ¥ (%0)
are fulfilled, then system (2. 1) possesses property P..
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